Fill in the Blanks:

- 1. There are _____ total C-C and C-H bonds present in glucose.
- 2. The complete oxidation of glucose via glycolysis and the TCA cycle yields _____ NADH and ____ FADH₂. Compare to #1.
- 3. The complete oxidation of the number of NADH and $FADH_2$ indicated in #2 to NAD+ and FAD via the electron transport chain will transfer _____ electrons to O_2 creating _____ H_2O .
- 4. The transfer of the number of electrons indicated in #3 to O_2 is coupled to the development of a gradient of _____ protons across the inner mitochondrial membrane.

Fill in the Blanks:

- 1. There are _____ total C-C and C-H bonds present in glucose.
- 2. The complete oxidation of glucose via glycolysis and the TCA cycle yields _____ NADH and ____ FADH₂. Compare to #1.
- 3. The complete oxidation of the number of NADH and $FADH_2$ indicated in #2 to NAD+ and FAD via the electron transport chain will transfer _____ electrons to O_2 creating _____ H_2O .
- 4. The transfer of the number of electrons indicated in #3 to O_2 is coupled to the development of a gradient of _____ protons across the inner mitochondrial membrane.